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ABSTRACT
Mutation testing is a time consuming process because large sets
of fault-injected-versions of an original app are generated and exe-
cuted with the purpose of evaluating the quality of a given test suite.
In the case of Android apps, recent studies even suggest that mu-
tant generation and mutation testing effort could be greater when
the mutants are generated at the APK level. To reduce that effort,
useless (e.g., equivalent) mutants should be avoided and mutant
selection techniques could be used to reduce the set of mutants used
with mutation testing. However, despite the existence of mutation
testing tools, none of those tools provides features for removing
useless mutants and sampling mutant sets. In this paper, we present
MutAPK 2.0, an improved version of our open source mutant gener-
ation tool (MutAPK) for Android apps at APK level. To the best of our
knowledge, MutAPK 2.0 is the first tool that enables the removal
of dead-code mutants, provides a set of mutant selection strate-
gies, and removes automatically equivalent and duplicate mutants.
MutAPK 2.0 is publicly available atGitHub: https://bit.ly/2KYvgP9
VIDEO: https://bit.ly/2WOjiyy
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1 INTRODUCTION
Mutation testing is a cumbersome and time consuming technique
aimed at assessing test suites quality [10]. Therefore, a plethora
of previous works have investigated different ways to reduce the
effort required by mutation testing [23]. In addition, a significant
number of approaches have been proposed to support mutant gen-
eration and mutation testing for different languages and types of
apps [3, 15, 19, 20]. The case of Android apps is not the exception;
developers and researchers can use a diverse set of tools for muta-
tion testing of Android apps [6, 7, 11, 13, 17, 22], and there are also
specific challenges that impact the cost of mutation testing. For
instance, enabling mutation at APK level [8] increases signifcantly
the amount of Android-specific mutants that can be generated,
when compared to mutation at source-code level.

In general, removing useless mutants (i.e., equivalent, duplicate,
and dead-codemutants) is a widely used technique for reducing test-
ing efforts. The latter type, dead-code mutants1, are less common
because compiler optimizations take care of removing dead-code
when building executable files/packages. However, this is not the
case for Android native apps written in Java and Kotlin, because
dead code is not removed (by default) when building APK files. In
addition, mutant selection techniques [24] are a desirable feature
during mutation testing to reduce the amount of analyzed mutants
while preserving the quality of the mutant population.

Unfortunately, despite the availability of a diverse set of muta-
tion tools for both source-code and bytecode levels, none of the
existing tools provide developers with capabilities for removing
dead-code, equivalent and duplicate mutants. Moreover, practition-
ers and researchers lack publicly available tools for mutant selection
and sampling. Therefore, in this paper we present MutAPK 2.0, an
improved version of our original mutant generation tool (MutAPK)
for android apps at APK level. MutAPK 2.0 enhances mutant gen-
eration process by removing dead-code, equivalent and duplicated
mutants. Additionally, it provides users with three mutant selection
techniques based on random and representative subset selection.

MutAPK 2.0, to the best of our knowledge, is the first tool
enabling techniques for reducing mutation testing effort of An-
droid apps. MutAPK 2.0 is open sourced and publicly available at
GitHub: https://bit.ly/2KYvgP9. The MutAPK 2.0 repository also
includes an online appendix containing tutorials, evaluation data,
and usage examples.
2 RELATEDWORK
Mutation testing is a well know testing technique used to evaluate
the quality of a given test suite. Several mutation operators and

1By dead-code mutants we mean mutants that are generated by applying mutation
operators on dead-code.
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tools have been proposed for different languages and app types
such as web applications [19], NodeJS packages [20], JS apps [15]
and data-intensive applications [3]. In the case of Android apps,
several approaches and tools have been proposed to address dif-
ferent perspectives of mutation testing [6–9, 11, 13, 14, 16, 17, 22].
Most of the existing tools allow for mutant generation, and some
of the tools provide mutation testing capabilities as in the case of
Pit[5] and Major[12] for Java systems, and Stryker [21] and Mutode
for JS/Node apps [20]. Surprisingly, none of the tools provide devel-
opers and researchers with features for reducing useless mutants
(i.e., dead-code, duplicate, and equivalent mutants) and sampling
the set of mutants to be used during mutation testing.

3 THE MUTAPK 2.0 TOOL
In this section, we describe the main features implemented in
MutAPK 2.0 to support (i) mutant selection, (ii) identification and
removal of duplicated and equivalent mutants, and (iii) dead code
analysis. Fig. 1 presents the workflow MutAPK 2.0 follows to gen-
erate and reduce APK mutants for Android apps. Note that our first
release of MutAPK [8] focused on mutants generation but without
having mechanisms for reducing the generated mutants. In this
paper we describe the components added and modified on top of
MutAPK (i.e., sections framed in red in Fig. 1). In order to understand
the original MutAPK architecture we refer the interested reader to
our preliminary publication [8] and online appendix [1]. As the
reader can note, we have improved three stages of the mutant
generation process: (i) prior to the Potential Faults Profile (PFP) def-
inition2, (ii) after the PFP definition and before mutant generation,
and (iii) during mutant building process.
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Figure 1: MutAPK 2.0 architecture and workflow

3.1 Avoiding Mutants from Dead Code
The Android compilers for Java and Kotlin languages do not remove
dead code automatically, which means that by default, APKs of
2A PFP is the set of code locations where each mutation operator can be applied [13].

native apps include dead code. Thus, MutAPK 2.0 allows users to
reduce the mutants set by not injecting mutation operations on
dead code. In order to identify the dead code within the app’ SMALI
representation[2], our tool builds the call graph of an app under
analysis and identifies the methods that are not called by others.

Before explaining the dead code detection details, we provide
some context about how a method call is represented in SMALI.
As it can be seen in Fig. 2, a method call has 4 sections that are
relevant for our purpose: (i) unitName, (i.e., the class a method
belongs to), (ii) methodName, (iii) parameters, represented as
a concatenation of the types of the method arguments, and (iv)
returnType. Having this in mind we define the methodId of a
method as the concatenation of methodName, parameters and
returnType; and the methodCompoundId as the concatenation of
unitName andmethodId. This decision is based on the fact that
it might exist more than one method with the same name but that
differs by the parameters count and types.

Figure 2: SMALI representation of method call

Concerning the dead code detection, MutAPK 2.0 splits the AST
computation and PFP derivation [13] into two steps. First, it creates
a dictionary that maps the unitName of a SMALI file to an object
containing the AST and the qualified path. Second, using the pre-
viously generated ASTs, MutAPK 2.0 visits all the methods within
the different ASTs to identify the method calls.

Afterwards, MutAPK 2.0 extracts the Call Graph of the app using
a two levels HashMap, being the second level a mapping from the
methodId to a CallGraphNode (cGN) and the first level a mapping
from the unitName to the aforementioned second level HashMap
of methods. Now, regarding the content of a CallGraph node, we
store the methodId, the unitName, the AST node that represents
the method, and two sets containing (i) the cGNs of the methods
that call the current method (callers), and the cGNs of the methods
that are called by the current method (callees). As the reader might
know, there are some methods that are called through the code that
do not belong to the app’s developed code (i.e., libraries’ methods),
thus, we excluded API calls from the call graph creation3.

Once MutAPK 2.0 has built the call graph, the methods that
do not have a caller are removed from the original AST, therefore,
during the mutant generation stage, no mutation is applied on those
methods. Note that there are some callback and lifecycle methods in
the Android programming model that are automatically invoked by
the framework, so, those methods usually do not have callers in the
call graph; therefore, we have manually created a greenList of those
methods that should not be removed from the AST 4. Finally, when
all ASTs were pruned conserving the methods in the greenList, the
PFP derivation and mutant generations process are executed.

3A file containing a list of methodCompoundId for API calls is generated at the end
of mutant generation process in case a user wants to analyze them.
4The list of methods can be found in our online appendix[1]
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3.2 Mutant Selection Techniques
After the PFP derivation is completed, a mapping between the
mutation operators and the locations within the code identified
as mutable is obtained. Using this map as input, along with the
user selected technique, MutAPK 2.0 generates a subset of the PFP
to be used during the mutant generation process. If no selection
technique is defined by the user, then, the whole set of mutants is
generated. We describe each selection technique as follows.

3.2.1 Random selection (randSel). In this case, a usermust provide a
desired amount of mutants to be selected. First, MutAPK 2.0 checks
that the user’s required amount of mutants is less than the available
PFP locations. Second, in order to ensure all mutant operators that
have PFP locations, are being represented in the subset, MutAPK 2.0
uses a round robin exploration technique to go through all possible
key values in the PFP map. Once the algorithm has retrieved the
list of locations associated to a mutant operator, it randomly selects
one element, adds it to the final set of PFP locations and remove it
from the mutation operator’s list. If there is at least one location
per identified mutation operator, MutAPK 2.0 creates a list with
all the available locations within the PFP and randomly selects the
remaining amount of mutants.

3.2.2 Representative Subset. The second available technique is
based on the selection of an amount of mutants that fits the size
of a representative sample of the PFP locations set. In order to use
this technique, a user is required to provide three values: (i) confi-
denceLevel (c), (ii)marginError (e), and (iii) selectionScope. MutAPK
2.0 uses the equation shown in Fig. 3 to calculate the size of the
subset. Until this point there are two values that are not being
provided by the user, the z-score and the base’ population size. Nev-
ertheless, z-score is associated to the confidence level and the size
of the population size is calculated based on the value of the latter
parameter.

sampleSize(N , e, z) =

zc 2p(1−p)
e2

1 +
(
zc 2p(1−p)

e2N

)
Figure 3: Sample Size equation. N = population Size, e = mar-
gin of error, zc = z-score, and p = expected proportion

The population size (N) is computed based on the value of the
selectionScope argument provided by the user:

Per Mutation operator (rSPerOperator). Represented as a
positive boolean value in the config file, this option generates the
resulting subset as a concatenation of the subsets of the locations
belonging to each mutant operator. Which means, if a user selects
this option, MutAPK 2.0 would go through all mutant operators in
the PFP, calculating and randomly selecting a sample of the loca-
tions associated to the mutant operator. Therefore, the resulting set
would be a concatenation of the subsets for each mutant operator.
For example, let us say we have a PFP with 1000 locations that are
distributed between two mutant operators: InvalidURI (N=600) and
NullInputStream (N=400), and let us use a confidenceLevel of 95%
and marginError of 5%. Once MutAPK 2.0 is executed it would
calculate the sample size for InvalidURI using the previous equa-
tion and will randomly select 235 mutants from the 600 mutants.

Afterwards, it will continue by calculating the amount forNullInput-
Stream resulting in a set of size 197. Finally, it would return a set of
432 (235+197) mutants.

Whole PFP set (rSWholePFPSet). On the other hand, if a user
provides a negative boolean value, MutAPK 2.0 uses the whole
PFP set size as the N parameter of the equation. Nevertheless,
it would first select at least one mutant per mutation operator
to ensure the representativeness of the sample. Using the same
example previously defined, MutAPK 2.0 would use 1000 as N ,
however, it would first randomly select a mutant from each mutant
operator.

3.3 Duplicate and Equivalent Mutants
To enhance the quality of the generated mutants set, we have in-
cluded a step for removing duplicate and equivalent mutants. This
process relies on the Trivial Compiler Equivalence (TCE) proposed
by Papadakis et al. [18]. Given two apps, TCE calculates their simi-
larity via the hashcode of its files. Specifically, in order to identify
equivalent mutants (i.e., mutants that are syntactically equivalent
to the original app) we compare each mutant to the base app, and
for duplicate mutants (i.e.,mutants that are syntactically equivalent
to other mutants) we compare each pair of mutants by using TCE.

Since one of the most time consuming processes in the gener-
ation of mutants is the compilation/building of the mutants, we
decided to compute TCE using three hashcodes for each mutant [9]:
(i) smali folder hash, containing all the source code representations,
(ii) res folder hash, containing all the resources of the app, and (iii)
AndroidManifest.xml hash. By relying on the three hashes, we com-
pute a compoundHashcode for each mutant, with the procedure
depicted in Listing 1. This approach allows us to generate one Hash-
code that represents the mutant and to use a hashmap structure to
map compoundHashcode values to mutants . Afterwards, if there
is no difference between the compoundHashcode of original app
and a mutant or between two mutants, then we mark the mutants
as equivalent or duplicate (respectively).

Snippet 1: Compound Hash code computation algorithm
int hash = 7;
hash = 31 * hash + hashManifest.hashCode ();
hash = 31 * hash + hashSmali.hashCode ();
hash = 31 * hash + hashResource.hashCode ();
return hash;

The preference for a hashmap to map compoundHashcodes
and mutants, is based on the fact that its search complexity is
O(1). Therefore, it allows MutAPK 2.0 to easily identify if a mutant
compoundHashcodes already exists. MutAPK 2.0 computes the
compoundHashcode of the base application and stores it in the
hashmap. By this, MutAPK 2.0 is able to identify, in case a hash-
code is duplicated, which mutant is colliding to. MutAPK 2.0 also
computes the original app’s compoundHashcode and adds it to
the hashmap. Therefore, if there is a collision with the original app,
then the mutant is identified as equivalent; if there is a collision
but between mutants, the mutant is then tagged as a duplicate.

4 MUTAPK 2.0 IN ACTION
In order to evaluate the MutAPK 2.0 features, we used our tool with
10 open source android apps belonging to the androtest [4] dataset.

1613



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Camilo Escobar-Velásquez, Diego Riveros, Mario Linares-Vásquez

In particular, we aimed at measuring the reduction of the dataset
when removing dead-code mutants, as well as equivalent and dupli-
cate ones. In addition, we evaluated whether the implementation
of the selection techniques produced balanced sets (in terms of the
mutation operators). Since our approach analyzes dead code within
the SMALI representation, we selected the top 10 apps in terms of
the smali folder size of their corresponding APK files. Note that (i)
the original version of our tool [8] does not detect dead code before
applying the mutation operators, and (ii) both (1.0 and 2.0) versions
implement the same list of mutation operators. The list of analyzed
apps is with our online appendix[1].

4.1 Dead-code Mutants
To measure the number of dead-code mutants we executed both
versions of our tool (MutAPK 1.0 [8] and MutAPK 2.0) on the ten
selected apps and without using the equivalent/duplicate removal
feature from MutAPK 2.0. By computing the difference in the num-
ber of mutants generated by each tool, we were able to identify the
number of mutants created by mutations on dead code.

Figure 4: Amount of mutants generated with and without
dead code on the 10 analyzed apps.

Fig. 4 presents the amount of mutants generated on the 10 apps.
As expected, the set of mutants is larger when dead code is not
removed. Specifically, there is a difference (on average) of 15.5%
when removing dead-code mutants. Since mutation testing requires
to execute a test suite on the generated mutants, by avoiding mu-
tant generation over dead code, a user might reduce its execution
time by 15%. In our dataset, com.eleybourn.bookcatalogue is the app
with the largest number of dead-code mutants, 1711 cases (19.9%).
Nevertheless, the com.bwx.bequick app is the one having the largest
percentage of dead code mutants: 20.9% (i.e., 462 out of 2210).

4.2 Mutant Selection Techniques
In order to evaluate the behavior of the selection techniques, we
calculated the difference between the estimated amount of mutants5
and the number of selected mutants by operator and app. Therefore,
we extracted from the MutAPK 2.0 logs the number of mutants
generated for each mutant operator per app after applying a given
selection strategy. Additionally, we estimated the expected amount
of mutants that should be generated per mutant operator in order to
preserve the distribution of the original mutant dataset (i.e.,without
applying any selection technique). Once we had those values, we
computed the average difference for the three selection techniques
available in MutAPK 2.0.

5Amount of mutants required to preserve the proportion between mutant operators
when selecting a sample set

Figure 5: Average difference between expected amount of
mutants and amount of generated mutants per mutant op-
erator for each selection technique. randSel = Random Se-
lection, rSPerOperator = representative subset per operator,
rSWholePFPSet = representative subset whole PFP set

Fig. 5 depicts the average differences computed previously. The
obtained values show that the three selection techniques generated
a small difference when compared to the expected amount. Never-
theless, we could notice, by analyzing the standard deviation, that
even when the average difference is close to 0, the distance to the
mean per mutant operator is higher when using a fully random
technique (i.e., amountMutants) than when using a technique based
on representative subset.

4.3 Duplicate and Equivalent Mutants
Regarding the duplicatemutants, we processed the output of MutAPK
2.0 and found that for our apps dataset there was on average 16
duplicate mutants per app, being com.nloko.android.syncmypix the
top-1 app with 44 mutants (∼2% of the mutants in the app).

Figure 6: Average amount of mutants tagged as equivalent
and duplicate per app

In terms of equivalent mutants, we found ∼5.4 cases per app,
being com.eleybourn.bookcatalogue the one with more equivalent
mutants (i.e., 11 out of 6990).

5 CONCLUSION & FUTUREWORK
Mutation testing is a time consuming process, therefore, reducing
dead-code, equivalent and duplicate mutants contributes to reduce
the number of mutants to be tested. Previous studies have depicted
the large amount of mutants generated for android apps [9, 13] and
in particular when mutation is done at APK level. Thus, to reduce
the mutation testing effort required with APKs, in this paper we
presented MutAPK 2.0, which is an extension of the original MutAPK
tool. MutAPK 2.0 removes dead-code mutants, and duplicate and
equivalent mutants by following the TCE approach by Papadakis et
al. [18]. In addition, MutAPK 2.0 allows for mutant selection using
three sampling techniques. To the best of our knowledge MutAPK
2.0 is the only tool having these capabilities.

Future work will be focused on implementing more mutant se-
lection techniques (e.g., regression-based mutation), extending the
scope of dead code removal to resources such as strings and colors,
and extending the available mutant operators set.
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